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Big Picture: Hitting yet another wall!
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The Walls of Computer Architecture

» 1st Wall — Mid 90s: the Memory Wall
» 2nd Wall — 2004: the Power Wall

Steps taken:

* Multi-/Many Core, Cache Hierarchies

* NoCs and Distributed Computing with
application-specific accelerators

3rd Wall —now: the Locality Wall [1]

* Memory intensive, but cache-unfriendly
characteristics

» Dominated by data access & movement

How to break the locality wall?

Increase Data-to-Task Locality

» Data Migration
» Task Migration
* Near Memory Computing

Research Questions:
* Architecture of the future

» Best approach/combination
* Programming paradigm
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Normalized Execution Time

MPSoC 2018: Region-based Coherence [2,3]

Non-uniform memory accesses (NUMA)

Data placement influences performance
-> Analyze the impact of data placement

Placement Algorithms
» First Touch Policy
* Place data into tile of first access

* Most Accessed Policy
» Place data to preferred tile
+ Known after task execution, but
exploitable for periodic task invocation
» Maximize local accesses

Impact of Data Placement
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Near Memory Acceleration (NMA)

Topical research subject Our scope
» Eliminating / reducing CPU-to-memory * Role of NMA in distributed-shared memory
accesses via local interconnect for architectures
memory-intense sub-functions » Implies necessity for considering task
* Mostly addressing accelerator-centric 3D- and data placement / migration
stacked memory systems [4] [5] * SHARQ & Graphcopy
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SHARQ — An Overview [s]

Software-Defined Hardware-Managed Queues

Combine flexibility of software queues with
performance of hardware acceleration

Software-Defined Hardware-Managed
Dynamic allocation and definition Remote
. . | Task
of arbitrary sized queues Invocation

MPMC
FIFO
Queue

DMA
Transfer




Selected SHARQ Features
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Queue & Memory Management

» SHARQ access to queue descriptor

» Separation into allocator stack &
bounded buffer

» No software involvement / up-calls

Remote
Task
Invocation

DMA
Transfer

Remote Task Invocation
» Ensure processing of elements
» Scheduled by SHARQ on demand
» Specify max. number of handler tasks
» Contract between hardware & software

Evaluation: NAS-Benchmarks & Scalability
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Benchmark Results

« Communication intensive kernels
highly benefit from SHARQ

Only EP (embarassingly parallel)
does not profit

SHARQ has good scaling behaviour

Especially multi-tile systems benefit
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Near-Memory Accelerated Graph Copy

-Memory Graph Copy

* Reduces NoC traffic

Near

Pegasus

+ Avoids (de)serialization

» Graph copy algorithm in hardware

» Graph copy algorithm in software
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Near-Memory Graph Copy Results

IMSuite Graph Algorithm Kernels
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“igure 9: Runtime measurements of the IMSuite benchmarks in the 4x4 configuration. Top: NEMESYS vs. Message-passin

MP) normalized to MP-single. Bottom: NEMESYS vs. Pegasus normalized to Pegasus-single.
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Summary

Near Memory Acceleration in Distributed-Shared-Memory
architectures is an effective means to tackle the locality wall
*  NMA primarily means bringing the processing closer to the data

» ... with all its implications / dependencies on data / task
placement
« ... orbring/ keep the data closer to the processor

+ with Region-Based Cache Coherence

This presentation: Near Memory Acceleration applied to Multicore
OS or runtime middleware support functions
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Thanks for your attention!
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