
23/07/2019

1

Andreas Herkersdorf, Sven Rheindt,

Akshay Srivatsa, Thomas Wild

Technical University of Munich

MPSoC Forum 2019

Near Memory Accelerators for Efficient Inter-Tile Communication

in Distributed-Shared-Memory Architectures

2

Big Picture: Hitting yet another wall!

[1] MemSys 2017 Keynote

23/07/2019

2

• 1st Wall – Mid 90s: the Memory Wall

• 2nd Wall – 2004: the Power Wall

Steps taken:

• Multi-/Many Core, Cache Hierarchies

• NoCs and Distributed Computing with

application-specific accelerators

 3rd Wall – now: the Locality Wall [1]

• Memory intensive, but cache-unfriendly

characteristics

• Dominated by data access & movement

3

The Walls of Computer Architecture

Increase Data-to-Task Locality

• Data Migration

• Task Migration

• Near Memory Computing

Research Questions:

• Architecture of the future

• Best approach/combination

• Programming paradigm

4

How to break the locality wall?

23/07/2019

3

Non-uniform memory accesses (NUMA)

Data placement influences performance

 Analyze the impact of data placement

Placement Algorithms

• First Touch Policy

• Place data into tile of first access

• Most Accessed Policy

• Place data to preferred tile

• Known after task execution, but

exploitable for periodic task invocation

• Maximize local accesses

5

MPSoC 2018: Region-based Coherence [2,3]

Memory Memory

Memory

Tile

Mem

Tile

Mem

Tile

Mem

Global Memory

6

Impact of Data Placement
Bad Data Placement

Bad Data Placement

23/07/2019

4

Topical research subject

• Eliminating / reducing CPU-to-memory

accesses via local interconnect for

memory-intense sub-functions

• Mostly addressing accelerator-centric 3D-

stacked memory systems [4] [5]

Near Memory Acceleration (NMA)

Our scope

• Role of NMA in distributed-shared memory

architectures

• Implies necessity for considering task

and data placement / migration

• SHARQ & Graphcopy

CPU CPU CPU

 TLM

NMA

Mem-Ctrl

CRM

CPU CPU CPU

 TLM

NMA

Mem-Ctrl

CRM

Thread

Software part

NMA accelerated
part

Accessed data

Application

Tile X Tile Y

NA NA

Router Router

D d

Data migration

m … … n

Task migration

7

8

SHARQ – An Overview [6]

Hardware-Managed Software-Defined

Dynamic allocation and definition

of arbitrary sized queues

Combine flexibility of software queues with

performance of hardware acceleration

Software-Defined Hardware-Managed Queues

23/07/2019

5

Queue & Memory Management

• SHARQ access to queue descriptor

• Separation into allocator stack &

bounded buffer

• No software involvement / up-calls

Remote Task Invocation

• Ensure processing of elements

• Scheduled by SHARQ on demand

• Specify max. number of handler tasks

• Contract between hardware & software

Selected SHARQ Features

9

Benchmark Results

• Communication intensive kernels

highly benefit from SHARQ

• Only EP (embarassingly parallel)

does not profit

• SHARQ has good scaling behaviour

• Especially multi-tile systems benefit

10

Evaluation: NAS-Benchmarks & Scalability

IS

23/07/2019

6

Pegasus

• Avoids (de)serialization

• Graph copy algorithm in software

Near-Memory Graph Copy

• Reduces NoC traffic

• Graph copy algorithm in hardware

Near-Memory Accelerated Graph Copy

11

IMSuite Graph Algorithm Kernels

12

Near-Memory Graph Copy Results

23/07/2019

7

Near Memory Acceleration in Distributed-Shared-Memory

architectures is an effective means to tackle the locality wall

• NMA primarily means bringing the processing closer to the data

• … with all its implications / dependencies on data / task

placement

• … or bring / keep the data closer to the processor

• with Region-Based Cache Coherence

This presentation: Near Memory Acceleration applied to Multicore

OS or runtime middleware support functions

Summary

13

Thanks for your attention!

14

Acknowledgements:

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) – project number 146371743 – TRR 89: Invasive Computing. (2010 – 2022).

We like to thank our collaborators at FAU Erlangen (groups of Prof. Schröder-Preikschat,

Prof. Teich) and KIT Karlsruhe (Prof. Becker, Prof. Snelting).

July 8, 2019, 5:10am

23/07/2019

8

[1] Peter Kogge. 2017. Memory Intensive Computing, the 3rdWall, and the Need for Innovation

 in Architecture. https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf

[2] Akshay Srivatsa, Sven Rheindt, Thomas Wild, Andreas Herkersdorf. “Region Based Cache

Coherence for Tiled MPSoCs”. 2017 30th IEEE International System-on-Chip Conference

(SOCC), 2017

[3] Akshay Srivatsa, Sven Rheindt, Dirk Gabriel, Thomas Wild, Andreas Herkersdorf.

 CoD: Coherence-on-Demand – Runtime Adaptable Working Set Coherence for DSM-based

 Manycore Architectures. (SAMOS 2019)

[4] S. F. Yitbarek, T. Yang et al, “Exploring specialized near-memory processing for data

intensive operations”, in DATE, pp. 1449-1452, 2016.

[5] F. Schuiki, M. Schaffner et al, “A Scalable Near-Memory Architecture for Training Deep

Neural Networks on Large In-Memory Datasets”, 2018.

[6] Sven Rheindt, Sebastian Maier, Florian Schmaus, Thomas Wild, Wolfgang Schröder-

 Preikschat, Andreas Herkersdorf. SHARQ: Software-Defined Hardware-Managed Queues for

 Tile-Based Manycore Architectures. (SAMOS 2019)

[7] Manuel Mohr and Carsten Tradowsky. 2017. Pegasus: Efficient Data Transfers for PGAS

 Languages on non-cache-coherent many-cores. DATE.

References

15

https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf

