TUTI

Near Memory Accelerators for Efficient Inter-Tile Communication

in Distributed-Shared-Memory Architectures

Andreas Herkersdorf, Sven Rheindt,
Akshay Srivatsa, Thomas Wild

Technical University of Munich

MPSoC Forum 2019

Big Picture: Hitting yet another wall!

\\f) e N

) e /
PSRN L Architectures
po We Need New [1] MemSys 2017 Keynote
ss of apps

a“wall” for some important cla

I
st wall = Mid 90s: the Memory Wa

power wall
d a“ = 2004 the
o 20d W 45 Loca\‘W Wall

« When we hit

I.LE Memory (not Core)-DrNen.
_ l/»llh(,

Il SAVAIS

p—
'r*‘l‘\\'u‘nn DAME

ps Wlth

23/07/2019

The Walls of Computer Architecture

» 1st Wall — Mid 90s: the Memory Wall
» 2nd Wall — 2004: the Power Wall

Steps taken:

* Multi-/Many Core, Cache Hierarchies

* NoCs and Distributed Computing with
application-specific accelerators

3rd Wall —now: the Locality Wall [1]

* Memory intensive, but cache-unfriendly
characteristics

» Dominated by data access & movement

How to break the locality wall?

Increase Data-to-Task Locality

» Data Migration
» Task Migration
* Near Memory Computing

Research Questions:
* Architecture of the future

» Best approach/combination
* Programming paradigm

23/07/2019

Normalized Execution Time

MPSoC 2018: Region-based Coherence [2,3]

Non-uniform memory accesses (NUMA)

Data placement influences performance
-> Analyze the impact of data placement

Placement Algorithms
» First Touch Policy
* Place data into tile of first access

* Most Accessed Policy
» Place data to preferred tile
+ Known after task execution, but
exploitable for periodic task invocation
» Maximize local accesses

Impact of Data Placement

Blackscholes

120 BRECC:FT
PR — DRBCC:MA
100 =Y in DAIC
050
82% 2% 38.4%
s
49,9%49,9% |
040 86,3%86,4%
?1 w‘m
020
0,00
8
Degree of Parauensm
Swaptions
e WRACC:FT
Yoo BRBCC:MA

o 1. % oaio

E

5

< oa0

§

fom

I

T o

5

2

5%
7% T03% H

4 8 i
Degree of Parallelism

1
£,
£
:
o
S0
H
o
E
5
2

&

100
uw nuu
20
000

......

mm

Bad Data Placement

WRBCCHFT

BRECC:MA
A3 ‘W‘

onio
an»
I'"* |""‘ﬂ 55 a5, z%,”m

Bad Data Placement

WRBCCHFT

BRBCC:MA
QA0
w1x
o 10 .
7] =

Degree .‘rp, allelism

23/07/2019

23/07/2019

Near Memory Acceleration (NMA)

Topical research subject Our scope
» Eliminating / reducing CPU-to-memory * Role of NMA in distributed-shared memory
accesses via local interconnect for architectures
memory-intense sub-functions » Implies necessity for considering task
* Mostly addressing accelerator-centric 3D- and data placement / migration
stacked memory systems [4] [5] * SHARQ & Graphcopy
Application -~ Task migration— T~

Thread m CPU
Q Software part I I

. S
A \NM‘/& A
I “NMA accelerated

part Mem-Ctrl Mem-Ctrl
-. Accessed data Tile X D T‘LM Tile Y ™ \
Cd
S~ o - - _-
Data migration =Router Router|

SHARQ — An Overview [s]

Software-Defined Hardware-Managed Queues

Combine flexibility of software queues with
performance of hardware acceleration

Software-Defined Hardware-Managed
Dynamic allocation and definition Remote
. . | Task
of arbitrary sized queues Invocation

MPMC
FIFO
Queue

DMA
Transfer

Selected SHARQ Features

5

Memory

Queue N
Desc1r|plar "

Queue |[[™.
Desczrl ptor

CPU

CPU

|
I

" NA

Queue & Memory Management

» SHARQ access to queue descriptor

» Separation into allocator stack &
bounded buffer

» No software involvement / up-calls

Remote
Task
Invocation

DMA
Transfer

Remote Task Invocation
» Ensure processing of elements
» Scheduled by SHARQ on demand
» Specify max. number of handler tasks
» Contract between hardware & software

Evaluation: NAS-Benchmarks & Scalability

[~

10

o

~

o1
T

o
o1
T

Relative Duration

0.25

CG

JoBASENOSWQUOSHARQ |—|
P

EP FT IS

Relative Duration

loBASENISWQUISHARQ

o LT

|

1x1

2x1 2x2

Benchmark Results

« Communication intensive kernels
highly benefit from SHARQ

Only EP (embarassingly parallel)
does not profit

SHARQ has good scaling behaviour

Especially multi-tile systems benefit

10

23/07/2019

23/07/2019

Near-Memory Accelerated Graph Copy

-Memory Graph Copy

* Reduces NoC traffic

Near

Pegasus

+ Avoids (de)serialization

» Graph copy algorithm in hardware

» Graph copy algorithm in software

s

-
A

_.———é‘
'1 4

@
L2 D

PGAS MEM

PGAS MEM

11

Near-Memory Graph Copy Results

IMSuite Graph Algorithm Kernels

vC

KC

BY

UOTJRIT(] ATIE[Y

UOTRINCT JALR[RY

DST BY DR DS KC LCR HS DpP MIS MST

BF

“igure 9: Runtime measurements of the IMSuite benchmarks in the 4x4 configuration. Top: NEMESYS vs. Message-passin

MP) normalized to MP-single. Bottom: NEMESYS vs. Pegasus normalized to Pegasus-single.

12

23/07/2019

Summary

Near Memory Acceleration in Distributed-Shared-Memory
architectures is an effective means to tackle the locality wall
* NMA primarily means bringing the processing closer to the data

» ... with all its implications / dependencies on data / task
placement
« ... orbring/ keep the data closer to the processor

+ with Region-Based Cache Coherence

This presentation: Near Memory Acceleration applied to Multicore
OS or runtime middleware support functions

13

Thanks for your attention!

Acknowledgements:
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — project number 146371743 — TRR 89: Invasive Computing. (2010 — 2022).

We like to thank our collaborators at FAU Erlangen (groups of Prof. Schréder-Preikschat,
Prof. Teich) and KIT Karlsruhe (Prof. Becker, Prof. Snelting).

14

TUTI

References

[1] Peter Kogge. 2017. Memory Intensive Computing, the 3rdWall, and the Need for Innovation
in Architecture. https://memsys.io/wp-content/uploads/2017/12/The Wall.pdf

[2] Akshay Srivatsa, Sven Rheindt, Thomas Wild, Andreas Herkersdorf. “Region Based Cache
Coherence for Tiled MPSoCs”. 2017 30th IEEE International System-on-Chip Conference
(SOCCQ), 2017

[3] Akshay Srivatsa, Sven Rheindt, Dirk Gabriel, Thomas Wild, Andreas Herkersdorf.

CoD: Coherence-on-Demand — Runtime Adaptable Working Set Coherence for DSM-based
Manycore Architectures. (SAMOS 2019)

[4] S. F. Yitbarek, T. Yang et al, “Exploring specialized near-memory processing for data
intensive operations”, in DATE, pp. 1449-1452, 2016.

[5] F. Schuiki, M. Schaffner et al, “A Scalable Near-Memory Architecture for Training Deep
Neural Networks on Large In-Memory Datasets”, 2018.

[6] Sven Rheindt, Sebastian Maier, Florian Schmaus, Thomas Wild, Wolfgang Schrdder-
Preikschat, Andreas Herkersdorf. SHARQ: Software-Defined Hardware-Managed Queues for
Tile-Based Manycore Architectures. (SAMOS 2019)

[7] Manuel Mohr and Carsten Tradowsky. 2017. Pegasus: Efficient Data Transfers for PGAS
Languages on non-cache-coherent many-cores. DATE.

15

23/07/2019

https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf

