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Big Picture: Hitting yet another wall! 

[1] MemSys 2017 Keynote 



23/07/2019 

2 

• 1st Wall – Mid 90s: the Memory Wall 

• 2nd Wall – 2004: the Power Wall 

 

Steps taken: 

• Multi-/Many Core, Cache Hierarchies 

• NoCs and Distributed Computing with 

application-specific accelerators 

 

 3rd Wall – now: the Locality Wall [1] 

• Memory intensive, but cache-unfriendly 

characteristics 

• Dominated by data access & movement 

 

 

3 

The Walls of Computer Architecture 

Increase Data-to-Task Locality 

 

• Data Migration 

• Task Migration 

• Near Memory Computing 

 

Research Questions: 

 

• Architecture of the future 

• Best approach/combination 

• Programming paradigm 
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How to break the locality wall? 
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Non-uniform memory accesses (NUMA) 

 

Data placement influences performance 

 Analyze the impact of data placement 

 

Placement Algorithms 

• First Touch Policy 

• Place data into tile of first access 

 

• Most Accessed Policy 

• Place data to preferred tile 

• Known after task execution, but  

exploitable for periodic task invocation 

• Maximize local accesses 
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MPSoC 2018: Region-based Coherence [2,3] 
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Impact of Data Placement 
Bad Data Placement 

Bad Data Placement 



23/07/2019 

4 

Topical research subject 

• Eliminating / reducing CPU-to-memory 

accesses via local interconnect for  

memory-intense sub-functions 

• Mostly addressing accelerator-centric 3D-

stacked memory systems [4] [5] 

 

Near Memory Acceleration (NMA) 

Our scope 

• Role of NMA in distributed-shared memory 

architectures 

• Implies necessity for considering task 

and data placement / migration  

• SHARQ & Graphcopy 
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SHARQ – An Overview [6] 

Hardware-Managed Software-Defined 

Dynamic allocation and definition 

of arbitrary sized queues 

Combine flexibility of software queues with 

performance of hardware acceleration 

Software-Defined Hardware-Managed Queues 
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Queue & Memory Management 

• SHARQ access to queue descriptor 

• Separation into allocator stack & 

bounded buffer 

• No software involvement / up-calls 

 

 

 

 

 

 

 

 

 

Remote Task Invocation 

• Ensure processing of elements 

• Scheduled by SHARQ on demand 

• Specify max. number of handler tasks 

• Contract between hardware & software 

Selected SHARQ Features 
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Benchmark Results 

 

• Communication intensive kernels 

highly benefit from SHARQ 

 

• Only EP (embarassingly parallel) 

does not profit 

 

• SHARQ has good scaling behaviour  

 

• Especially multi-tile systems benefit 
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Evaluation: NAS-Benchmarks & Scalability 

IS 
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Pegasus 

• Avoids (de)serialization 

• Graph copy algorithm in software 

 

 

 

Near-Memory Graph Copy 

• Reduces NoC traffic 

• Graph copy algorithm in hardware 

Near-Memory Accelerated Graph Copy 
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IMSuite Graph Algorithm Kernels 
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Near-Memory Graph Copy Results 
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Near Memory Acceleration in Distributed-Shared-Memory 

architectures is an effective means to tackle the locality wall 

• NMA primarily means bringing the processing closer to the data 

• … with all its implications / dependencies on data / task 

placement 

• … or bring / keep the data closer to the processor  

• with Region-Based Cache Coherence 

 

This presentation: Near Memory Acceleration applied to Multicore 

OS or runtime middleware support functions 

 

 

 

Summary 
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Thanks for your attention! 
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